Complete restoration of a wild-type mtDNA genotype in regenerating muscle fibres in a patient with a tRNA point mutation and mitochondrial encephalomyopathy.
نویسندگان
چکیده
Replicative segregation of mitochondrial DNA (mtDNA) can produce large differences in the proportions of wild-type and mutant mtDNAs in different cell types of patients with mitochondrial encephalomyopathy. This is particularly striking in the skeletal muscle of patients with Kearns-Sayre syndrome (KSS), a sporadic disease associated with large-scale mtDNA deletions, and in sporadic patients with tRNA point mutations. Although the skeletal muscle fibres of these patients invariably contain a large proportion of mutant mtDNAs, mutant mtDNAs are rare or undetectable in satellite cells cultured from the same muscle biopsy specimens. Since satellite cells are responsible for muscle fibre regeneration, restoration of the wild-type mtDNA genotype might be achieved in these patients by encouraging muscle regeneration. To test this concept, we re-biopsied a patient with a KSS phenotype and a mtDNA point mutation in the tRNAleu(CUN)gene and analysed muscle fibres regenerating at the site of the original muscle biopsy. Regenerating fibres were identified by morphological criteria and by expression of neural cell adhesion molecule (NCAM). All such fibers were positive for cytochrome c oxidase (COX) activity by cytochemistry and essentially homoplasmic for wild-type mtDNA, while the majority of non-regenerating fibres were COX-negative and contained predominantly mutant mtDNAs. These results demonstrate that it may be possible to improve muscle function in similar patients by methods that promote satellite cell incorporation into existing myofibres.
منابع مشابه
Mitochondrial DNA Mutations, Pathogenicity and Inheritance
Mitochondria contain their own DNA (mtDNA), which codes for 13 proteins (all subunits of the respiratory chain complexes), 22 tRNAs and 2 rRNAs. Several mtDNA point mutations as well as deletions have been shown to be causative in well-defined mitochondrial disorders. A mixture of mutated and wild type mtDNA (heteroplasmy) is found in most of these disorders. Inheritance of mtDNA is maternal, a...
متن کاملبررسی فراوانی جهش های DNA میتوکندریایی در دیابت نوع دو
Background: Mitochondria is one of the intracellular organelle with specific DNA. Some diseases caused by mtDNA mutations have been reported up to now. Mutation of A3243G and deletion of 5kb are two of them that related to Diabetes type II. The aim of this study was to evaluate the frequency of A3243G mutation and 5kb mt DNA deletion in type II diabetic patients.Methods: The DNA extracted from...
متن کاملAssociation of mtDNA mutation with Autism in Iranian patients
The autism spectrum disorders (ASD) are amongst the most heritable complex disorders. Although there have been many efforts to locate the genes associated with ASD risk, many has been remained to be disclosed about the genetics of ASD. Scrutiny's have only disclosed a small number of de novo and inherited variants significantly associated with susceptibility to ASD. These only comprise a small ...
متن کاملLack of Association of Mitochondrial A3243G tRNALeu Mutation in Iranian Patients with Type 2 Diabetes
Many kinds of mutations in mitochondrial (mt) DNA have been reported to be related to the development of Diabetes Mellitus (DM), this type of diabetes has also been shown to be influenced by other genetic factors and/or environmental factors. Among them, tRNALeu(UUR) and its adjacent mtDNA NADH dehydrogenase subunit 1(ND1) region within the mt genome are linked to high susceptibility to DM. A p...
متن کاملMarked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encephalomyopathy.
The segregation of mutant and wild-type mtDNA was investigated in transformants constructed by transferring human mitochondria from individuals belonging to four pedigrees with the MELAS encephalomyopathy-associated mtDNA mutation (MELAS is mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) into human mtDNA-less (rho 0) cells. Five of 13 clonal cell lines contain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 6 13 شماره
صفحات -
تاریخ انتشار 1997